Particle ratios in PHENIX at RHIC

Hiroaki Ohnishi

Brookhaven National Laboratory for the PHENIX Collaboration.

- Investigation of particle production mechanism in heavy ion collisions.
- What can we learn from Particle ratios?
 - Ratios contain basic information about collision dynamics.
 - * Chemical potential of quarks. μ_S and μ_B
 - * Chemical freeze out temperature.
 - * Degree of baryon stopping power. pbar/p, μ_R
 - This information will define boundary conditions of collision dynamics.

Conditions at Freeze-out.

This will be a first step to investigate whether Quark-Gluon-Plasma is formed or not.

PH#ENIX Identified Hadron spectra

Single particle spectra of pion, kaon, proton and their anti particles.

Au+Au collisions at $\sqrt{s_{NN}}$ =130 GeV, Minimum bias data.

PHENIX** K+/K- ratio as a function of P_T

Within the systematic errors, K+/K- does not depend on P_T over the measured range

PH KENIX K+/K- ratio as a function of centrality

No dependence as a function of centrality.

A similar lack of centrality dependence was observed in experiments at SIS, AGS and SPS.

PHENIX** Summary of K+/K- ratio

* K+/K- ratio decreases
as a function of √s
(0.8GeV/c <PT<1.6GeV/s)

K+/K- @ Min.Bias= 1.08±0.03(stat)±0.22(sys.)

* K+/K- production at RHIC follows the trend observed in the experiments at SIS, AGS and SPS.

pbar/p ratio as a function of centrality

Npart

No strong dependence as a function of centrality.

ENIX pbar/p ratio as a function of P_T

- pbar/p ratio is either flat or falling slightly at higher pT values.
- It is vary hard to extract pbar/p ratio at P_T above 3 GeV/c due to small statistics.

PH***ENIX** Summary of pbar/p ratio

pbar/p ratio at RHIC is dramatically increasing from AGS and SPS energy.

No clear Centrality and P_⊤ dependence are seen within errors.

PH#ENIX Summary of K+/K- and pbar/p

0.4

0.5

0.6

Both K+/K- and pbar/p are closing to 1.0 from AGS to RHIC

Baryon chemical potential ~ 40MeV Not baryon free($\mu_R!=0$).

0.7

0.8

0.9

p/π + and anti- p/π as a function of pT

 p/π + and anti- p/π - ratio @ pT=2.0 GeV/c decreases dramatically at small Number of participants.

Hiroaki Ohnishi [BNL] Thermal Fest 07/20/01

PHENIX preliminary

PHENIX** p/π + and anti- p/π -

- p/π + and anti- p/π ratios integrated within 0.5 GeV/c<pT<2.2 GeV/c.
- No strong dependence as a function of centrality.

PHENIX** p/π + and anti- p/π -

Ratios as a function of collision energy.

0.5 GeV/c < pT < 2.2 GeV/c

 p/π + and anti- p/π - ratio at RHIC getting close to the value at p+p collisions.

- * Particle ratios in Au+Au collisions at √s=130 GeV are presented.
- * No clear centrality dependence is seen in K+/K- and pbar/p ratios.
- * K+/K- and pbar/p ratios show no dependence with P_T . (Kaon; P_T <1.6 GeV/c, Proton; P_T <3.0 GeV/c)
- * Particle ratios@ minimum bias, @ mid rapidity
 - * K+/K- = 1.08 ± 0.03 (stat.) ± 0.22 (sys.)
 - * pbar/p = 0.64 ± 0.01 (stat.) ± 0.07 (sys.)
- * K+/K- and pbar/p ratios are dramatically decreasing / increasing from SPS and AGS energies.
- * K/π and p/π ratios increase as a function of P_T . $p/\pi+$ and $pbar/\pi-$ ratio are clearly approaching to 1.0.
- * Baryon density at RHIC is much less than AGS and SPS, but not baryon free at mid rapidity.